Synthesis and Characterization of New Cationic Hexacoordinate Silanes

Beon-Kyu Kim, Seok-Bong Choi, Steven D. Kloos, and Philip Boudjouk*

Center for Main Group Chemistry, Department of Chemistry, North Dakota State University, Fargo, North Dakota 58105

*Recei*V*ed April 15, 1999*

The reaction of N , N , N' , N' , N'' -pentamethyldiethylenetriamine (pmdeta) with HSiCl₃ and H₂SiCl₂ in dry CH₂Cl₂ affords the novel cationic intermolecular hexacoordinate silanes [pmdeta'HSiCl2]+Cl- (**1**) and [pmdeta'H2SiCl]+Cl- (**2**), respectively. The addition of *N*,*N*,*N*′,*N*′,*N*′′-pentaethyldiethylenetriamine (pedeta) to a solution of HSiCl3 in dry CH₂Cl₂ gives the redistribution product formulated as the salt [pedeta \cdot H₂SiCl]⁺Cl⁻ (3) and SiCl₄. Treatment of H2SiCl2 with pedeta and *^N*,*N*,*N*′,*N*′,*N*′′,*N*′′′-hexamethyltriethylenetetramine (hmteta) produces [pedeta'H2SiCl]+Cl- (**3**) and $[hmmeta·H_2SiCl]⁺Cl⁻ (HCl) (4). In 4, the fourth amine is not bonded to silicon. Reactions of 2, 3, and 4$ with NaBPh₄ give the ion exchange products [pmdeta·H₂SiCl]⁺BPh₄⁻ (5), [pedeta·H₂SiCl]⁺BPh₄⁻ (6), and
[bmteta·H₂SiCl]⁺BPh₄⁻ (HCl) (7) respectively. The salts 1.5.6 and 7 were characterized by sing [hmteta'H₂SiCl]⁺BPh₄⁻ (HCl) (7), respectively. The salts **1**, **5**, **6**, and **7** were characterized by single-crystal X -ray diffraction analysis. Most notable is that the cations in **1**, **5**, **6**, and **7** are sli X-ray diffraction analysis. Most notable is that the cations in **1**, **5**, **6**, and **7** are slightly distorted octahedra in which two hydrogen atoms are at the trans positions. The reactions of **3** with tmeda and pmdeta afford the intermolecular ligand exchange products tmeda H_2SiCl_2 and 2, respectively.

Introduction

Generally, organosilanes with at least two electronegative groups on silicon will coordinate two donors to give hexacoordinate silicon compounds by inter- or intramolecular coordination.1 Diamines such as 2,2′-bipyridine and 1,10 phenanthroline easily coordinate intermolecularly to halogenosilanes and give neutral² or cationic species, 3 depending on the starting silane. Fleischer recently reported that bis(dichlorosilyl) amine reacts with 3-picoline (3-methylpyridine, 3-pic) to give neutral and cationic species $SiH₂Cl₂(3-pic)$ and $[SiH₂(3-pic)₄] Cl₂$, respectively.⁴

Examples of intermolecular hexacoordinate silanes with aliphatic donor ligands are rare.5 Recently we reported the syntheses, reactions, and characterizations of new hexacoordinate silanes with *N*,*N*,*N*′,*N*′-tetramethylethylenediamine (tmeda) and *N*,*N*,*N*′,*N*′-tetraethylethylenediamine (teeda) complexed to $HSiCl₃$ and $H₂SiCl₂$.⁶ In this paper we present the results of our continuing efforts in this area: the synthesis and characterization of new cationic intermolecular hexacoordinated silicon compounds containing triamines and a tetramine.

Results and Discussion

Synthesis and Characterization of [pmdeta'**HSiCl2]**+**Cl**- **(1), [pmdeta[']H₂SiCl]⁺Cl⁻ (2), and [pmdeta'H₂SiCl]⁺BPh₄⁻
(5) The addition of** *N N N' N'**N'***-pentamethyldiethylenetriamine (5).** The addition of *N*,*N*,*N*′,*N*′,*N*′′-pentamethyldiethylenetriamine (pmdeta) to a solution of $HSiCl₃$ in $CH₃CN$ proceeds exother-

- (1) Corriu, R. J. P.; Young, J. C.; Reye, C.; Chuit, C.*Chem. Re*V*.* **¹⁹⁹³**, *93*, 1371 and references therein.
- (2) Wannagat, U.; Hensen, K.; Petesch, P.; Vielberg, F. *Monatsh. Chem*. **1967**, *98*, 1415.
- (3) Kummer, D.; Gaisser, K. E.; Seshadri, T. *Chem. Ber.* **1977**, *110*, 1950.
- (4) Fleischer, H.; Hensen, K.; Stumpt, T. *Chem. Ber.* 1996, **129**, 765.
- (5) (a) Sheldrick, W. S.; Wolfsberger, W. *Z. Naturforsch*., *B* **1977**, *32*, 22. (b) Anderson, D. G.; Blake, A. J.; Cradock, S.; Ebsworth, E. A. V.; Rankin, D. W. H.; Welch, A. J. *Angew. Chem., Int. Ed. Engl.* **1986**, *25*, 107.
- (6) Boudjouk, P.; Kloos, S. D.; Kim, B. K.; Page, M.; Thweatt, D. *J. Chem. Soc., Dalton Trans.* **1998**, 877.

Scheme 1. Reaction of Pmdeta with $HSiCl_3$ and H_2SiCl_2

mically to give $[pmdeta \cdot HSiCl_2]^+Cl^-$ (1) (Scheme 1). ⁷ Under similar conditions, adding pmdeta to a solution of H_2SiCl_2 in CH_2Cl_2 produces [pmdeta H_2SiCl ⁺ Cl^- (2). To the best of our knowledge, this is the first example in which three nitrogen electron pairs have been used to form a hexacoordinate silane.

The 1H NMR spectrum of **2** shows two SiH peaks at 4.04 and 4.55 ppm. The methyl group on the internal nitrogen atom is not in the plane of the three nitrogen atoms, leading to a different environment for each hydrogen attached to silicon (Figure 1). Five signals, 40.2, 47.2, 47.5, 52.6, and 57.4 ppm, for the pmdeta fragment in 13 C NMR indicate that the triamine is coordinated rigidly to the silicon center. 29Si NMR reveals a triplet at -111.87 ppm ($^{1}J_{\text{SiH}} = 358$ Hz) consistent with a hexacoordinated silicon bound to two hydrogens. The infrared and elemental analysis data also support the structure of **2**. VT-NMR analysis over the range -60 to $+35$ °C shows no change in the 1H NMR, consistent with a static framework.

Adding NaBPh₄ in CH₃CN to a solution of 2 in CH₂Cl₂ leads to a heterogeneous mixture which yields white crystals of **5**, eq

^{(7) (}a) Preliminary results have been presented: Kim, B. K.; Kloos, S. D.; Boudjouk, P. Conference on Main Group Chemistry, Fargo, ND, May 30 to June 1, 1996; Abstract No. P-19. (b) Kim, B. K.; Kloos, S. D.; Page, M.; Boudjouk, P. XXXth Organosilicon Symposium, London, Ontario, Canada, May 30-31, 1997; Abstract P-73.

Figure 1.

Figure 2. ORTEP diagram of $[pm\text{det}a\cdot\text{HSiCl}_2]^+Cl^- \cdot CH_3CN$ (1) showing refined atoms at the 30% probability level.

Figure 3. ORTEP diagram of [pmdeta·H₂SiCl]⁺BPh₄⁻ (5) showing refined atoms at the 30% probability level refined atoms at the 30% probability level.

1. The molecular structures of $[pmdeta \cdot HSiCl_2]^+Cl^-$ (1) and [pmdeta⁻H₂SiCl]⁺BPh₄⁻ (5) have been determined in the solid state (Figures 2 and 3) state (Figures 2 and 3).

The cations in **1** and **5** exhibit a distorted octahedral geometry. Selected bond lengths and bond angles are given in Table 1, and crystallographic data are given in Table 2. The bond angles for $H(1) - Si - Cl(1)$ in **1** and $H(1) - Si - H(2)$ in **5** are 174.6° and 176.4 \degree , respectively. All the Si-H, Si-N, and Si-Cl bond distances in **1** are similar to the corresponding bond distances in **5**. The Cl^- and BPh_4^- anions are well removed from the silicon centers in **1** and **5** at 7.0 and 7.8 Å, respectively.

Synthesis and Characterization of [pedeta'**H2SiCl]**+**Cl**- **(3) and [pedeta'H₂SiCl]⁺BPh₄^{** $-$ **} (6).** We recently reported that while tmeday reacts with HSiCl₂ to form the complex tmeday while tmeda reacts with $HSiCl₃$ to form the complex tmeda \cdot HSiCl3, *N*,*N*,*N*′,*N*′-tetraethylethylenediamine (teeda) and HSiCl3 give the redistributed products teeda \cdot H₂SiCl₂ and SiCl₄ in high

Table 1. Selected Bond Distances (Å) and Angles (deg) for **1**, **5**, **6**, and **7**

		5	6	7
$Si-Cl(1)$ $Si-Cl(2)$	2.165(3) 2.176(2)	2.2035(7)	2.193(3)	2.2130(15)
$Si-N(1)$	2.035(5)	2.0365(16)	2.067(7)	2.018(3)
$Si-N(2)$ $Si-N(3)$	2.019(5) 2.035(5)	2.0132(15) 2.0403(16)	2.027(8) 2.089(7)	2.019(3) 2.101(3)
$Si-H(1)$ $Si-H(2)$	1.347(48)	1.384 1.376	1.353 1.282	1.415 1.395
$H(1) - Si - H(2)$		176.4	174.6	175.3
$H(1) - Si - Cl(1)$	174.6(19)			
$N(1) - Si - N(3)$	169.1(2)	170.75(7)	170.5(3)	169.63(14)

yield.6 Similarly, we observed a dramatic change in the reactivity of the triamines toward $HSiCl₃$ when we switched the pmdeta to pedeta.

The addition of HSiCl₃ to a solution of *N*,*N*,*N'*,*N'*,*N'*^{*-*}</sup> pentaethyldiethylenetriamine (pedeta) in dry $CH₂Cl₂$ proceeds exothermically to give a homogeneous solution, which, upon the addition of hexane at room temperature, produces [pedeta' $H_2SiCl^+Cl^-$ (3), within a few minutes, eq 2. $SiCl_4$ can be removed from the reaction mixture under reduced pressure. No other products are observed.

The 1H NMR spectrum for **³** shows two Si-H peaks at ca. 4.38 and 4.73 ppm, indicating different environments for each hydrogen attached to silicon. 29Si NMR gives a triplet at -106.09 ppm (¹ J_{SiH} = 380 Hz). Analysis of the ²⁹Si NMR data for **3** ($^1J_{\text{SiH}}$ = 380 Hz) reveals a significant upfield shift (^{29}Si : $\Delta\delta$ = -96.5 ppm) and an increase in the Si-H coupling constant (Δ (¹ J _{SiH}) = 12 Hz) from those of the compound HSiCl₃. The magnitude of the change in the chemical shift and in the coupling constant can be explained by the strong coordination of pedeta to silicon. In contrast to the total redistribution of $HSiCl₃$ promoted by pedeta, $H₂SiCl₂$ reacts with pedeta to give $[pedeta \cdot H_2SiCl]^+Cl^-$ (3), with only traces of the redistribution products, $HSiCl₃$ and $H₃SiCl$, eq 3. The reaction of pedeta with H2SiCl2 probably proceeds along the same path as pmdeta with $H₂SiCl₂$.

The addition of NaBPh₄ in CH₃CN to a solution of 3 in CH₂- $Cl₂$ leads to a heterogeneous mixture from which the ion exchange product $[pedeta \cdot H_2SiCl]^+BPh_4^-$ (6) is obtained as white crystals eq. 4. The crystal structure of 6 shows a white crystals, eq 4. The crystal structure of **6** shows a

hexacoordinated cation similar to 5. With the H1-Si-H2 bond

a Goodness of fit = $s = {\sum [w(F_0^2 - F_c^2)^2]/(n - p)}^{1/2}$. $^b R = {\sum ([F_0] - |F_c|)}^2 [F_0]$. $^c R_w = {\sum [w(F_0^2 - F_c^2)^2]}^2 [w(F_0^2)^2]^{1/2}$.

angle of 174.6°, its geometry shows a slightly tilted octahedral structure in which two hydrogens occupy the trans position, (Figure 4).

Deviations from this geometry can be seen in the $N(1)-Si-$ N(2) angles of $84.8(3)^\circ$, N(2)-Si-N(3) angles of $86.5(3)^\circ$, and $N(1)-Si-N(3)$ angles of 170.5(3)°. The Si-Cl bond length is 2.193(3) Å. These bond angles and bond length are consistent with a hexacoordinate silicon compound. In addition, compared to **⁵**, **⁶** shows similar Si-H (1.353 and 1.282 Å), Si-N (2.027, 2.067, and 2.089 Å), and Si -Cl (2.193 Å) bond distances (Table 1).

Synthesis and Characterization of [hmteta'**H2SiCl]**+**Cl**- **(HCl)** (4) and $[h$ **nteta**^{\cdot}**H₂SiCl**]^{$+$}**(HCl) BPh₄^{** $-$ **} (7).** Fleischer et al. recently reported that bis(dichlorosilyl)amine or H₂SiCl₂ reacts in a chloroform solution with 3-picoline to form two intermolecular hexacoordinate silicon compounds, H_2SiCl_2 - $(3pic)_2$ and $[H_2Si(3pic)_4]Cl_2$.⁴ With our aliphatic ligands, we investigated the possibility of generating dicationic hexacoordinate and heptacoordinate complexes of silicon. However, the use of tetramine to form those target complexes was not successful. Instead, this reaction affords the monocationic hexacoordinate silicon complex [hmteta H_2 SiCl]⁺Cl⁻ (HCl) (4) (hmteta = N , N , N' , N'' , N'' , N''' -hexamethyltriethylenetetramine), in which the fourth amine is not bonded to the silicon atom, eq 5.

As with **5** and **6**, the addition of NaBPh₄ to a solution of [hmteta H_2 SiCl]⁺Cl⁻ (HCl) (7) in CH₂Cl₂ leads to anion exchange, eq 6. The X-ray crystal structure of **7** was determined (Figure 5).

Figure 4. ORTEP diagram of $[pedeta \cdot H_2SiCl]]^+BPh_4^-$ (6) showing refined atoms at the 30% probability level refined atoms at the 30% probability level.

Figure 5. ORTEP diagram of $[\text{hmteta} \cdot H_2 \cdot \text{SiCl}]^+ \cdot \text{BPh}_4^-$ (HCl) (7) showing refined atoms at the 30% probability level showing refined atoms at the 30% probability level.

The Si-H bond distances are 1.415 and 1.395 Å; Si-N bond distances are 2.018, 2.019, and 2.101 Å; and the Si-Cl bond distance is 2.2130 Å (Table 1). The BPh_4^- ion is well removed from the silicon center of the complex at 10.003 Å.

Ligand Exchange Reactions. In a manner similar to that of the ligand exchange reaction of teeda \cdot H₂SiCl₂,⁶ the addition of

Scheme 2. Ligand Exchange Reactions of $[pedeta·H₂SiCl]⁺Cl- (3)$

tmeda and pmdeta to [pedeta \cdot H₂SiCl]⁺Cl⁻ (3) in CH₂Cl₂ led to the precipitation of tmeda \cdot H₂SiCl₂ and [pmdeta \cdot H₂SiCl]⁺Cl⁻ (**2**), respectively (Scheme 2). Compound **3** is very soluble in CH_2Cl_2 , while compounds tmeda H_2SiCl_2 and **2** are only slightly soluble. This low solubility is probably the driving force for the ligand exchange reaction. Surprisingly, these exchanges occur while the stereochemistry at the silicon atom is preserved. Variable-temperature NMR analysis for stereochemical rigidity of compound 3 in the range from -60 to $+35$ °C reveals no change in geometry.

Experimental Section

General Methods. All experiments were performed under dry nitrogen. Tmeda, teeda, pmdeta, pedeta, and hmteta were dried by refluxing over sodium for at least 10 h before distillation. $CH₃CN$ was heated over $CaH₂$ for more than 12 h, distilled into a flask containing P2O5, and then stirred over gentle heat overnight before final distillation. $CH₂Cl₂$ was distilled from CaH₂ prior to use. Hexane was first stirred over H2SO4, followed by stirring over sodium before distillation. Trichlorosilane was degassed through several freeze-pump-thaw cycles before bulb-to-bulb distillation. Dichlorosilane in xylene (25%) was used as obtained from Gelest Co. IR samples were prepared in a nitrogen-filled drybox using dry KBr and a screw-fitted press. IR spectra were recorded on a Mattson Cygnus 25FT-IR. ¹H, ¹³C, and ²⁹Si NMR spectra were obtained on a JEOL GSX270 or JEOL GSX400 spectrometer using CDCl₃ as the solvent, except where otherwise indicated. 1 H and 13 C chemical shifts were reported relative to CDCl₃. 29Si NMR spectra are referenced relative to TMS at *δ* 0.00. Crystal structures were performed using Siemens SHELXTL programs.⁸ Elemental analyses were obtained on a Perkin-Elmer Series II CHNO/O Analyzer 2400. Melting points were taken on a Thomas-Hoover capillary melting point apparatus and are uncorrected.

[pmdeta·HSiCl₂]⁺**Cl⁻·CH₃CN (1).** Pmdeta (0.83 g, 4.79 mmol) was added to a solution of trichlorosilane (0.649 g, 4.79 mmol) in $CH₃CN$ (15 mL), causing the precipitation of white solids. Filtration of the solids followed by washing with hexane (10 mL \times 2) and drying by vacuum gave **1** (1.22 g, 73%). Mp = 231-232 °C. ¹H NMR: δ 1.95 (s, 3H), 2.77 (s, 3H), 2.81 (s, 6H), 2.86 (s, 6H), 3.12 (m, 4H), 3.38 (m, 4H), 4.03 (s, 1H). ²⁹Si NMR: δ -130.3 (d, J_{SiH} = 358 Hz). IR: 2248 cm⁻¹ $(\nu(CN))$, 2127 cm⁻¹ ($\nu(SiH)$). Anal. Calcd for C₁₀H₂₇Cl₃N₄Si: C, 37.77; H, 7.78; N, 16.02. Found: C, 37.75; H, 7.78; N, 15.87.

**[pmdeta·H₂SiCl]⁺Cl⁻ (2) and [pmdeta·H₂SiCl]⁺BPh₄⁻ (5). Pmdeta
14** σ **23.97 mmol) was added to a solution of dichlorosilane (3.63)** (4.14 g, 23.97 mmol) was added to a solution of dichlorosilane (3.63

g, 35.95 mmol) in CH_2Cl_2 (20 mL), causing the precipitation of white solids. Filtration of the solids followed by washing with hexane (30 mL \times 3) and drying by vacuum gave 2 (5.8 g, 88%). Mp = 200 °C dec. ¹H NMR: *δ* 2.73 (s, 12H), 2.78 (s, 3H), 3.10–3.69 (m, 8H), 4.04
(s, 1H), and *A* 55 (s, 1H), ¹³C NMR: *δ* 40.2, 47.2, 47.5, 52.6, and 57.40 (s, 1H), and 4.55 (s,1H). 13C NMR: *δ* 40.2, 47.2, 47.5, 52.6, and 57.40. ²⁹Si NMR: δ -111.9 (t, J_{SiH} = 358 Hz). IR: 2115 cm⁻¹ ($v(\text{SiH})$). Anal. Calcd for C₉H₂₅Cl₂N₃Si: C, 39.41; H, 9.19; N, 15.32. Found: C, 39.49; H, 9.15; N, 14.24.

A solution of 2 (2 g, 7.29 mmol) in CH_2Cl_2 (20 mL) was added to a solution of NaBPh₄ (2.49 g, 7.29 mmol) in CH₃CN (8 mL), resulting in the precipitation of white solids after 8 h of stirring. Hexane (3 mL) was added to the filtrate. After 3 days, this solution produced white crystals of **5** (2.67 g, 66%). Mp = 195-197 °C. ¹H NMR: δ 2.63 (s, 12H), 2.75 (s, 3H), 2.84-3.17 (m, 8H), 3.96 (s, 1H), 4.56 (s,1H), 6.86 (t, 4H), 7.01 (t, 8H), and 7.21 (s, 8H). 13C NMR: *δ* 39.5, 46.3, 46.5, 52.3, 56.4, 121.9 (C*p*), 125.7 (C*m*), 135.8 (C*o*), and 163.9 (q, C*ipso*). IR: 2133 cm⁻¹ ($v(SiH)$). Anal. Calcd for C₃₃H₄₅BClN₃Si: C, 71.02; H, 8.13; N, 7.53. Found: C, 69.95; H, 8.05; N, 7.41.

 $[pedeta \cdot H_2SiCl]^+Cl^-$ (3) and $[pedeta \cdot H_2SiCl]^+BPh_4^-$ (6). Com-

and 3 can be prepared by two methods: (1) Pedeta (2.43 g, 10 mmol) pound **3** can be prepared by two methods: (1) Pedeta (2.43 g, 10 mmol) and hexane (25 mL) were added to a solution of trichlorosilane (3.36 g, 25 mmol) in CH_2Cl_2 (25 mL). The precipitated solids were separated, washed with hexane (20 mL \times 3), and dried under vacuum to give 3 (2.14 g, 63%). (2) Pedeta (2.5 g, 10.27 mmol) and hexane (20 mL) were added to a solution of dichlorosilane (1.14 g, 11.3 mmol) in CH2- Cl2 (20 mL). The precipitated solids were separated, washed with hexane (20 mL \times 3), and dried under vacuum to give 3 (3.14 g, 89%). mp = 87-89 °C. ¹H NMR: δ 1.08 (t, 3H), 1.21-1.25 (m, 12H), 2.83-
3.33 (m, 18H), 4.38 (s, 1H), and 4.73 (s, 1H), ¹³C NMR· δ 6.4, 9.1 3.33 (m, 18H), 4.38 (s, 1H), and 4.73 (s,1H). 13C NMR: *δ* 6.4, 9.1, 41.4, 47.2, 47.7, and 48.8. ²⁹Si NMR: δ -106.09 (t, *J* _{SiH} = 380 Hz). IR: 2155 cm^{-1} ($v(SiH)$). Anal. Calcd for C₁₄H₃₅Cl₂N₃Si: C, 48.82; H, 10.24; N, 12.20. Found: C, 49.27; H, 9.96; N, 12.10.

A solution of 3 (3 g, 8.7 mmol) in CH₂Cl₂ (20 mL) was added to a solution of NaBPh4 (2.98 g, 8.7 mmol) in CH3CN (8 mL), resulting in the precipitation of white solids after 8 h of stirring. Hexane (3 mL) was added to the filtrate. After 3 days, this solution produced white crystals of **6** (3.9 g, 71%). Mp = 185-187 °C. ¹H NMR: δ 1.05 (t, 3H), 1.23 (m, 12H), 2.73-3.33 (m, 18H), 4.36 (s, 1H), 4.72 (s,1H), 6.85 (t, 4H), 7.00 (t, 8H), and 7.28 (s, 8H). 13C NMR: *δ* 6.3, 9.1, 41.3, 46.6, 47.58, 5.86, 50.6, 121.9 (C*p*), 125.7 (C*m*), 135.8 (C*o*), and 163.2 (q, C_{ipso}). IR: 2189 cm⁻¹ ($v(SiH)$). Anal. Calcd for C₃₈H₅₅BClN₃Si: C, 72.65; H, 8.82; N, 6.69. Found: C, 72.92; H, 8.77; N, 16.70.

 $[hmteta·H_2SiCl]⁺Cl⁻ (HCl) (4) and [hmteta·H_2SiCl]⁺ (HCl)$ $\mathbf{BPh_4}^-$ (7). Hmteta (2.36 g, 10.27 mmol) was added to a solution of dichlorosilane (2.02 g, 20.5 mmol) in CH_2Cl_2 (20 mL), resulting in the precipitation of white solids. Isolation of the solids by filtration followed by washing with hexane (20 mL \times 3) and drying by vacuum gave 4 (3.0 g, 80%). 1H NMR: *^δ* 2.60-2.68 (m, 18H), 2.98-3.71 (m, 12H), 4.03 (s, 1H), and 4.53 (s, 1H). ²⁹Si NMR: δ -108.7 (t, J_{SiH} = 364 Hz). IR: 2133 cm⁻¹ ($v(SiH)$).

A solution of $4(1.35 \text{ g}, 3.67 \text{ mmol})$ in $CH_2Cl_2(10 \text{ mL})$ was added to a solution of NaBPh₄ (1.25 g, 3.67 mmol) in CH₃CN (4 mL), resulting in the precipitation of white solids after 8 h of stirring. Hexane (3 mL) was added to the filtrate. After 3 days, this solution generated white crystals of **7** (1.1 g, 46%). Mp = 130-132°C. IR: 2133 cm⁻¹ ($v(SiH)$).

Acknowledgment. The financial support of the National Science Foundation through Grant No. 9874802 and the Dow Corning Corporation is gratefully acknowledged.

Supporting Information Available: Tables giving crystal data and structure refinement, atomic coordinates, isotropic and anisotropic displacement parameters, and bond lengths and angles for **1**. This material is available free of charge via the Internet at http://pubs.acs.org.

IC990415P

⁽⁸⁾ Sheldrick, G. M. SHELXTL v 5.10 software package, Bruker-axs, Madison, WI.